Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22283723

RESUMO

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected recognize and neutralize better the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-506622

RESUMO

Cellular immune defects associated with suboptimal responses to SARS-CoV-2 mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyzed antibody, B cell, CD4+ and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CI). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses and enhances comparatively more Thelper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (TNF/IL-2 skewing), while others (CCR6, CXCR6, PD-1 and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieve robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-502672

RESUMO

Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare in SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype and function of CD4+ and CD8+ T cell responses at post-boost memory timepoints. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278386

RESUMO

Several SARS-CoV-2 Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their Spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant Spikes. We observed that BA.4/5 and BQ.1.1 Spikes are markedly less recognized and neutralized compared to the D614G and the other Omicron subvariant Spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2 naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275056

RESUMO

While SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTR) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung and heart). Compared to a cohort of SARS-CoV-2 naive immunocompetent health care workers (HCW), the second dose induced weak humoral responses in SOTR, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, while the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273967

RESUMO

Due to the recrudescence of SARS-CoV-2 infections worldwide, mainly caused by Omicron BA.1 and BA.2 variants of concern, several jurisdictions are administering a mRNA vaccine boost. Here, we analyzed humoral responses induced after the second and third doses of mRNA vaccine in naive and previously-infected donors who received their second dose with an extended 16-week interval. We observed that the extended interval elicited robust humoral responses against VOCs, but this response was significantly diminished 4 months after the second dose. Administering a boost to these individuals brought back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observed that administering a boost to individuals that initially received a short 3-4 weeks regimen elicited humoral responses similar to those elicited in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naive individuals did not reach those present in previously-infected vaccinated individuals.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473679

RESUMO

Continuous emergence of SARS-CoV-2 variants of concern (VOC) is fueling the COVID-19 pandemic. Omicron (B.1.1.529), is rapidly spreading worldwide. The large number of mutations in its Spike raised concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses was shown to elicit antibodies that efficiently recognize Spikes from different VOCs. Here we evaluated the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously-infected individuals that received their BNT162b2 mRNA vaccine 16-weeks apart. Omicron Spike was recognized less efficiently than D614G, Alpha, Beta, Gamma and Delta Spikes. We compared to plasma activity from participants receiving a short (4-weeks) interval regimen. Plasma from individuals of the long interval cohort recognized and neutralized better the Omicron Spike compared to those that received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473317

RESUMO

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264015

RESUMO

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263532

RESUMO

While the standard regimen of the BNT162b2 mRNA vaccine includes two doses administered three weeks apart, some public health authorities decided to space them, raising concerns about vaccine efficacy. Here, we analyzed longitudinal humoral responses including antibody binding, Fc-mediated effector functions and neutralizing activity against the D614G strain but also variants of concern and SARS-CoV-1 in a cohort of SARS-CoV-2 naive and previously infected individuals, with an interval of sixteen weeks between the two doses. While the administration of a second dose to previously infected individuals did not significantly improve humoral responses, we observed a significant increase of humoral responses in naive individuals after the 16-weeks delayed second shot, achieving similar levels as in previously infected individuals. We compared these responses to those elicited in individuals receiving a short (4-weeks) dose interval. For the naive donors, these responses were superior to those elicited by the short dose interval.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456258

RESUMO

IntroductionCOVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. MethodsHIV-positive individuals (n=121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naive to SARS CoV-2 was used. The participants Anti-RBD IgG responses were measured by ELISA at baseline and 3 to 4 weeks after receiving the first dose of an mRNA vaccine). ResultsEleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between between the HIV negative control group (n=20) and the combined HIV+ group (n=106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p<0.0001). Increasing age was independently associated with decreased immunogenicity. ConclusionHIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436337

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435972

RESUMO

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naive individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253907

RESUMO

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428097

RESUMO

Functional and lasting immune responses to the novel coronavirus (SARS-CoV-2) are currently under intense investigation as antibody titers in plasma have been shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we sought to determine the presence of SARS-CoV-2-specific memory B cells in COVID-19 convalescent patients. In this study, we report on the evolution of the overall humoral immune responses on 101 blood samples obtained from 32 COVID-19 convalescent patients between 16 and 233 days post-symptom onset. Our observations indicate that anti-Spike and anti-RBD IgM in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity in convalescent plasma declines rapidly compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which increase over time, and the number of IgG+ memory B cells which remain stable thereafter for up to 8 months after symptoms onset. With the recent approval of highly effective vaccines for COVID-19, data on the persistence of immune responses are of central importance. Even though overall circulating SARS-CoV-2 Spike-specific antibodies contract over time during convalescence, we demonstrate that RBD-specific B cells increase and persist up to 8 months post symptom onset. We also observe modest increases in RBD-specific IgG+ memory B cells and importantly, detectable IgG and sustained Fc-effector activity in plasma over the 8-month period. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for the prevention of secondary infections, vaccine efficacy and herd immunity against COVID-19.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248642

RESUMO

Dysregulated immune profiles have been described in symptomatic SARS-CoV-2-infected patients. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of i) patients hospitalized with acute SARS-CoV-2 infection; ii) patients of comparable age/sex hospitalized for other acute disease (SARS-CoV-2 negative); and iii) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g. decreased proportion of T cells) that are similarly associated with acute SARS-CoV-2 infection and non-COVID-19 related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that are associated with SARS-CoV-2 status (e.g. elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days and mortality. Our data provides novel understanding of the immune dysregulation that are specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2+ patients at risk of unfavorable outcome and uncover novel candidate molecules to investigate from a therapeutic perspective.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20212092

RESUMO

Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and are also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to reverse causation and confounding. We identified genetic determinants of 931 circulating proteins in 28,461 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphism near the gene encoding the circulating protein. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 4,336 cases / 623,902 controls; OR = 0.54, P = 7x10-8), COVID-19 hospitalization (N = 6,406 / 902,088; OR = 0.61, P = 8x10-8) and COVID-19 susceptibility (N = 14,134 / 1,284,876; OR = 0.78, P = 8x10-6). Results were consistent in multiple sensitivity analyses. We then measured OAS1 levels in 504 patients with repeated plasma samples (N=1039) with different COVID-19 outcomes and found that increased OAS1 levels in a non-infectious state were associated with protection against very severe COVID-19, hospitalization and susceptibility. Further analyses suggested that a Neanderthal isoform of OAS1 affords this protection. Thus, evidence from MR and a case-control study supported a protective role for OAS1 in COVID-19 outcomes. Available medicines, such as phosphodiesterase-12 inhibitors, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...